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INTRODUCT ION

The tjrl nracanteA here rela .n , rhl ..... ..... -na
4 

..

the propagation of shock waves, mainly imploding spherical and cylindrical

shock waves, in water and (in part) in gases.

In Section 1 the relevant equation of state for water is presented and

the following bection deals with the consequences of this equation on shock

wave transitions.

Section 2 is concerned with the self-similar solution valid in the final

stages of collapse, where the shock may be considered to be infinitely strong

so that the pressure ahead, and more important, a pressure term in the equa-

tion of state may be neglected. Numerical results are given for the expo-

nent in the power law for the shock speed. In the following section a

perturbation on this solution, linearized in terms of the previously neg-

lected pressure terms, is evaluated. In effect this extends the range of

validity of the self-similar solution further away from the collapse point

or axis. The work of these two sections is closely related to the propaga-

tion of shocks and detonations in gases (Welsh, 1966), where a much fuller

account is presented.

An approximate solution for the shock motion from the time of its

initiation to its final collapse is given in Section 5, the method employed

being similar to that used by previous authors (Chester, et.al.) for the

motion of a shock wave in a non-uniform tube.

The final section is devoted to the exact, linearized solution for the

initial motion due to the release of a spherical diaphragm separating two

uniform regions at difterent pressures. The analysis is applicable to

i) spherical or cylindrical geometry, ii) high pressure in the interior or

exterior, and iii) any combination of gas and water for the two media.

S.
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1. EUATION OF STATE FOR WATER

In the classical theory of hydrodynamics the compressibility of water

is neglected, due to the relatively low order of magnitude of the pressure

;::±:tion: involved. Hocvr,- hubjctd t ctxtrcthly ,high

pressuresas, for instance, in an explosion, the compressibilitk can no

longer be neglected. In such a situation the Tait equation of state is

known to give an adequate representation of the compressibility (Cole, 1948).

This equation relating pressure, entropy, and density can be expressed as

p + B(s) - B(s)(2,T) (1.1)

B(s) is a slowly varying function of entropy s and has the dimensions of

pressure. p' is the (finite) value of the density for which the pressure

p is zero. 7 is dimensionless and approximately constant. With B(s)

taken to have the constant value 3.047 kilobars and 7 taken nu 7.15 the

above equation of state gives a good approximation to the behavior of water

at pressures up to 100 kilobars. Here we shall take Y = 7.

Defining the sound speed of water c by

C 2

we obtain from (1.1)

€ = B(s) -
PO

0

- (P+B(s,)) (1.2)P -

For a perfect gas the equation of state is

B/C v 7Y

pue/ v 7  (1.3)

I

S. ... ... ....... '1---........... ......... . . .. - - m . . . .



3

where
7 = adiabatic indices

c . specific heat at constant volume•,

which gives

= C)2 R (1.4)

If we assume that the function B(s) in (1.1) has the constant value

B and that p is sufficiently large that we may neglect B on the left

hand side of (1.1), then the equation of state for water is simply

p a P7

which is the equation of state of (1.3) for a gas when the entropy is

uniform, i.e., the motion is homentropic. Also the sound speed (1.2)

reduces to

I2
P

so that the motion of water at sufficiently high pressures may be treated

as that of a gas with Y - 7, neglecting the effect of any variations in

entropy. However, p must not be so large that (1.1) is not valid.

These simplifications will be used in evaluating the self-similar solution

for the final 6ollapse of spherical shock wave.

. are evidently three distinct ranges of pressure. The first forI
p << B corresponds to incompressible flow. The present work will be con-

cerned with the remain'ng two, i.e., p - B and p >> B. B will be

assumed constant.

We shall later require an expression for taie specific internal energy

of water, defined by

I;I
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S- - [nj'

2c + B-----2 (1.,)

7(7-1) p

2. SHOCK TRANSITIONS

The propagation of a shock wave in water is governed by the mechanical

laws of conservation of mass, momentum, and energy. The shock is assumed

to be a discontinuity in the flow variables, viscosity and heat conduction

being neglected. Also the relations between the flow variables on either

side of a plane shock will be used for curved shocks, under the assumption

that the width of the shock is negligible in comparison with its radius of

curvature.

With the subscript o denoting the variables ahead of the normal

shock, the variables behind it are given by the three conservation laws

P(U-u) = Po(U-u )

2 2
p + P(U-u) p 0 + P (U-u )

2
1 +2 + B

- 7(7-1) +p

2
1 (UU)2 +Po C Ba +

or
2 c

1 2 c 2
(U-u) + c (Uuo)2 +0

Also the second may be written

c 2+ M (Uu) 2  = U-u (C 2 + 7U 2
£.I
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so that B does not appear if the equations are expressed in terms of u,

ct p, in which case they coincide with those for a gas. We shall take

U =
0

The solution in terms ef the pressure ratio z - p/P 0  is

27B + ('-1) + (7+1)z

PO jB + (7+1) + (7-l)z
PO

U2 7B + 7-1 Po 7+1Po

PO 2 -2

o 2 7B 2 PO(7+1) 2 cz - (7 +47-1) + 47 p + 7(72-1)

2 2(71) (PO+B) 2

PO 7B + :- 1 7+1
2 P o + Z Po

1+
2.

The special case B - 0 corresponds to a gas.

In terms of the Mach number M - U/c the variables behind the shock

are

9- (7+O)M
2

Oo (7-1)M 2+2

2c

p 2 •7+1 2 (-I)
0 0

2
(7+1) 2 i S (27M2 _-(7-1)11((-)M +2]

0

• u . .. iu " a . .... u ... . •.. .. ' .
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The shock Manch number M in terms of the pressur:e ratio is

M2 4- - 7+1 zl

27 1 + B
p0

Since p /B - 1/300, if the water is initially at atmospheric pressure,
0

the factor multiplying z - 1 ij approximately 5.103. Hence M does not

differ greatly from unity unless z ia of corresponding order of magnitude.

In the limit as z-4 1, M-. I and

7, (PO+B) 7U .--+ Co • >> •P-
0 PO P/

0  
0

so that a very weak shock, wbich is approximately sonic, travels at a much

greater speed than a weak shock in a gas, but it requires a much greater

change in pressure ratio to increase the spaed of the shock wave in water

appreciibly.

Strong Shock Relations

A useful simplification of the conservation equations for a shock wave

in a gas is obtained by assuming that the shock is 'strong' so that the

pressure ahead may be neglected in comparison with the pressure behind.

This simplification is essential in obtaining self-similar solutions in-

vol'ving shock waves whose speed is non-constant. In the case of water,

identical strong s hock relations may be obtained, but under the more severe

restriction that not only is p >> p0  but also p >> B. These are

7+1
0° 7"- 1

2
7+1

,I2 27 (7-1) U2
C U

-two)



3. SELF-SIMILAR COLIAPSING SHOCKS

The !eJf-similar soluLion for the final stages of a collapsing spher-

ical shock wave in a gas is well known (Guderley, 1942). A sim~arity

hypothesis is obtained by using the strong shock relations, o-t dt I

any instant the flow is determined only by the radius of the shock and

the initial density of the gas, apart from scaling factors.

The equations governing the symmetric motion of a perfect, inviscid,

noa-heat-conducting gas are

T (u±kc) + (iac) (u±kc) = $ + S(- R

(3.1)

;R 1
whore k - 2/(C-l), - s/[fc((-1)], where s is specific entropy, and

j - 1 for cylindrical symmetry, 2 for rpherical symmetry. The appropriate

equations for water are the above, neglecting entropy variations, and so

are

•T (u±kc) + (u±c) ; (u±kc) = + (u_.cR (3.2)

No dimensional constants appear in these equations so that the shock

speed U is dependent only on the radius coordinate X of the shock

front, the time t, and the density P.,. Hence,

U r
t

i.L ., t

or U - x1"(1/a)



8

and, by suitable choice of length scale,

S -~l(1/a)U =-

aV

Due to the form of the strong shock relations, the flow is self-

similar with similarity variable

t
a Ri/

and the dimensionless fluid velocity and sound speed r, s defined by

t t
r = -Ru s M c

ave of the form

r - r(g) s = s(M)

so that the equations of motion are

d (r±ks) b-

where

b = (l-a(r±s))(r±ks) + jars

We can eliminate • from these equations and consider r as a function

of s given by

1 dr (l-r+s)b+ + (l-r-s)b
k ds (1-r+s)b+ - (1-r-s)b

1 . r(r-l)(czr-l) + s 2[k(l-a)-a(i+l)rl (3.3)
s (l-r)[k-a(j+k+l)r] + r(l-ar)-las 2

The parameter a is as yet unknown and is determined, as in the

Cudcrley solution, by the condition that the flow is regular on the
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negative characteristic which reaches the center of symmetry at the same

instant, t 0, as.the shock wave. On this line r l+s and the

regularity condition is simply: b -.0 or r - 1+s. The solution has

to satisfy this regularity condition, at s - s say, anid the conserva-

tion equations at the shock, where

2
r 7+1

7+1

If we seek a regular expansion for r(s) about s - so, say

r - r + r(S-So) + . .. . + rn(s-s )n~+ ...o 0o

then r0 , r 1 are the solutions of quadratic equations. The roots for r

are real in some range aR <a < 1 say, and the roots for r will also

be real unless this singular point (r0 So) in the r-s plane is a

spiral. Thus, there are in general four solutions which are regular on

the limiting negative characteristic. The selection of the solution is

decided partly by trial and error by computation and partly by the behavior

of the integral curves of the equation (3.3) to be discussed later.

In order to integrate the equation (3.3) a similar procedure to that

used previously (Welsh, 1966) was adopted. In this the regular series

solution is developed iteratively, without evaluation of the actual

coefficients, from the 1. n. c. s = s0 to the shock s - -E, and the

discrepancy there noted. The actual solution and the appropriate value

of Ct may then be evaluated by trial and error.

Exact results were found by this method and are given in Table I for

twelve cases, j = 1 and j = 2 and 7 = 6/5, 7/5, 5/3, 3, 5, 7.

In the case of a gas the extremely simple, approximate evaluation

of a given by Whitham (1958) gives remarkable accuracy. The method
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is applicable here and conaists of applying the characteristic condition

to he satisfied by the variables on the 1. n. c. to the values at the

shock . Tfie Ch'S'a- te ic.i coindition is
=. dR

d(u-kc) dt on dr u-cR dt

and on the shock -

u 2 R-'a
7+1

c - E R

and substitution of these into the characteristic condition gives

-1 -JDE 2
a (D+E)(D+kE) D = 7+1 (3.4)

which is tabulated as a along with the exact results. The relation be-w

tween Cw and the exact value is apparently more systematic than for the

case of a gas, in which entropy variations occur. In all cases a liesV

between a R and the exact values which are themselves never far apart,

and the accuracy increases with decreasing 7. For 7 - 1, a - 1 as

is the exact value. For this special case the shock is in fact a character-

istic. Also, the internal energy is infinite, causing the collapse to be

uniform.

The Integral Curves and the Reflected Shock

The equations (3.3) apply to the homentropic self-similar flow of a

gas or the self- similar flow of water, under the present assumptions. They

are identical to those used by Hunter (1960,1963) for the collapse of an

empty spherical cavity in water, apart from his use of the dimensionless

square of the sound speed. We shall now consider the behavior of the

integral curves of (3.3).
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Due to tic similarity of the flow the variablos are functions of

only. Thc physical "-L plane may be considered to be made of lines (pars-

bolas) • constant. The shock is -1 and t < -1 in the stationary

region ahead of the shock. The speed of a line

ic
t

~constant

is

t

Hence the nondimensionalization of the variables u,c to r,s is with

respect to the speed of the line • - constant, and such a path in the

R-t plane gives rise to a point in the r-s plane. The shock front trans-

forms into the point

r a +-- S 7+1

Negative values of s correspond to negative valucs of t, i.e., to the

imploding phase, and positive values of s describe the expanding phase.

The positive and negative characteristics of the flow each correspond to

a point on the lines r - 1 + s, respectively, on which dr/dt, ds/d§

are singular in general. Any physical solution must hove t increasing

throughout the associated integral curve in the r-s plane. In general

the direction of increasing time on the integral curves in the r-s plane

changes on crossing r - 1 ± s. In other words, a physical solution cannot

in general cross these lines. However, the appearance of singular points

of the equation (3.3) for dr/ds on r - 1 ± s provide the means of

crossing these: lines. In effect, the singular points cause another change

of direction, ,4ncelling that appearing already. The regularity condition

mentioned pr-ivi'uisly is in fact the condition for a regular solution through

In
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one of these singular points, For C < o6 these points do not appear, for

C a C they coincide, and for 1> cR they are real and distinct. If rl

is real then there is the possibility of a regular solution through the

singular point, which is either a node or a saddle. If r1 is imaginary

then the point must be a spiral.

The finite singular points of (3.3) are as follows:

1IO,) 2 (o+,l+so+), P3(so-,l+So.), P4(OO)

P4(0,0), 5(s' k , 0.z

a(J+k+l) ) 16 (o. !)

and three other points which are the mirror images of P2, P3. 25 in the

r-axis. Both o < 0, and S is the negative root of

$2 = r(1-a 0)r k
I k a na(j+k+l)

SP4 is always a degenerate note and PI is a saddle point with asymptotes

J1

in the direction of the r,s axes. P6 is always a node and is degenerate

if k j +1 (i.e., 7 - 5/3 spherical, 7 - 2 cylindrical). For k > J+l

the major axis, i.e., the direction of all the integral curves except for

one at right angles, is in the r-direction and for k < J+l in the

s-direction. For P5 there are two possibilities. When it is above

r - l+s it is a node and a saddle when below, the transition occurring

through its merging with P2 or P3 on r - l+s. Except in the special

case k - J+l the points P2 ,P 3  separate into a node and saddle or saddle

and node, respectively, for a slightly greater than %. When they

coincide with C - aR they form a confluence of a node and saddle. This

type of singular point is not a simple one. In investigating the behavior

of the curves near such a point it is necessary to include second order
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terms in the numerator and denominator as the discriminant of the coeffic-

cnt: h uldeIt Lerms vanishes, and to tirst order the solution

obtained is a straight line. For such a second ordpr Rintitlar - _nt the

significant variations occur on parabolas. For a first order node or

saddle the field of curves may be determined by finding the asymptotes

and the lines on which the curves have zero and infinite slope. For a

second order singular point the latter two lines and the asymptote between

them are parabolas and thc relative positions of the curves are the same

on either side of the point (in the first order case the positions are re-

versed) resulting in a naddle. This situation is exhibited graphically

in Fig. 1. In the special case k - J+l there is a triple coincidence

of P22 P3 and P5 when Q = a., resulting in a third order singular5/
point, so that the significant variations take place along cubic curves.

The position of these differs on either side of the point and the situation

is geometrically similar to the first order case, except for the scale in-

volved. Such a point may be either a third order node or saddle. Evidently

higher order singular points will be geometrically similar to the first

order type of singular point (node or saddle) or the second order type

(naddle), depending on whether the order is odd or even.

The values of at for which these transitions just discussed occur are

tabulated in Table I. For k < J+l the point P3, which is a node when

it first appears, changes to a spiral, in which case no regular solution

through it is possible. However, the actual solution was found to pass

through P2  in all cases. Through a first order node or saddle there are

two regular solutions. In the case of a saddle these are the asymptotes,

which are the only two solutions passing through the actual point. For a

node one of the two is the minor axis, i.e., the one solution not having

I

I
S~I

-b
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the same slope as all the others at the point, but the other is one of the

remainina curv&A AnA h- !: lz- i l.. inguisnable. In all cases the actual

solution wis through the major axis of P.2. and this was found to be the

only possible solution. No transition from P2  to P 3 occurs as it does

in the case of a gas (Welsh, 1966). Also the argument given in that pub-

lication that no uniform collapse (9 - 1) is possible applies here to the

case of water, since the flow behind a uniform shock is homentropic and the

equations of motion for gas and water are identical. This contrasts with

the situation found by Hunter (1960,1963) for cavitation in water. An

accelerating collapse exists in a certain range of 7, a uniform one in a

diffeient range, the latter being singular at the cavity front for certain

discrete values of 7.

The appropriate integral curve representing the actual solution in a

given physical solution starts at the shock point (D,-E), crosses

r - 1+# at P28 and then runs into P4 (0,0), with time increasing through-

out this path. P4  corresponds to the line t - 0 in the physical plane,

and the solution must continue beyond P4 . The integral curves are symrnetric

about r - 0, except for a change in direction of increasing time due to

the change in sign of s. Thus the integral curve passes through P4

smoothly, the points of the curve beyond P4  corresponding to lines I > 0,

i.e., expanding lines in the flow behind the shock. However, the curve

heads towards the singular line r w 1-i, corresponding to a positive

characteristic in the flow, which indicates the presence of a reflected

shock wave traveling along • - constant > 0. The solution is represented

by a portion of this curve in the region s > 0, r < 1-s, but jumps to

some other curve above r - 1-s. A condition on the flow behind this re-

flected shock is that the fluid velocity be zero at the center, i.e.,



u = 0 on R - 0. Hence r is finite here, but since c is m =

is infinite. It will now be seen that this infornation is sufficient to

detcrmine the integral curve which satisfies these conditions at R - 0,

by examining the singular points of (3.3) at infinity.

Here we are interested in the region a > 0. There are three singular

points on s at r ±aa, . The first two are nodes (half-o(J+l) "

nodes) and the one between them is a saddle (half-saddle), so that all

curves, save one, approach either r = ±w as s-* ®. The asymptote through

the saddle point is the only curve which has a finite value of r for

s -+ and so represents the flow behind the reflected shock. The jump

from this curve to the one describing the flow ahead of the reflected shock

is determined by the conservation equations. In this way the value of [

on the reflected shock can be evaluated. This has not been done here.

This type of reflection occurs when the shock speed is singular and

its curvature is infinite. If there is a symmetrically placed solid spher-

ical or cylindrical boundary causing the shock to be reflected before its

final collapse then this type of reflection is plane in nature, provided

the radius of the boundary is large in comparison with the shock width.

4. THE PERTURBATION OF THE SELF-SIMILAR SOLUTION

The self-similar solution is valid for p >> B, which is fairly re-

strictive, and presumably means that it is valid for a collapsing shockr wave in water for a much smaller neighborhood of the collapse point than

in the case of a gas. Here we shall consider the perturbation on the self-

similar solution due to taking B into account to first order. The pertur-

bations are analogous to those due to the counter-pressure ahead of a

collapsing shock wave in a gas (Welsh, 1966), the perturbations being of

relative order R

S.!



I,,
, ~1 6':

The form of the solution is now

u - .| R1-(1/Ot) + ! R'I+(1/a)

and the equations governing these pcrturbacions are

(1-r-s) d (r±ks) - b
±t t

•(1-ri-s) d (F±ks-) - a (
dt +

where i

a+ = ja(ri+ris) + (I-r-;s)(?±kr) + (1-a)(k-1)(ri-ris)

+ -• b (ris)(r±ks)
l-r+s i

and t may be eliminated as previously by considering r, i, i to be

functions of s

(1-r-s)b.(r'+k) - (l-r+s)b+(r'-k)

a+(r'+k) = b+(F'+k) (4.1)

a.(r'-k) * b.(F'-k) I

where ' _= d/ds

As is the case in the basic self-similar solution the boundary condi-

tions are obtained from the regularity conditir at s - so and the con-

servation eque.tions at s - -E. Since the displacement of these lines from
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their positions in the self-similar flow gives rise to terms of the same

order as the perturbations, it is necessary to take into account the,', 'is-

placements wtien applying boundary conditions on these lines.

In the basic flow the lines are

arid iu the perturbed flow

- -1(1 + P R"2+(2/a)) , - (Il + 8 R"2+(2/a))

We are mainly interested in the value of P.

The boundary conditions ut the shock are obtained by solving the con-

servation equations with c0  taken into account to first order. With the

problem expreased in terms of u and c, P does not appear explicitly

and we have

u D U - D' U-

"-c -E U + E' UI

where

E - 67-72"1 2 D' 2 2

2(7+1) -27 (7-1) 0 + 0

and U - - Rl(l/a) (I + P R`2+(2/a))

Hence at -- E we have

OP - ja- D- 2(1-a)(27-1) 12
3 2a 7-1 " (4.2)

1(-E) - j 7-1++ a E,3-2Za 7+

S.--. . . . . .|
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.he value of c is given by

2 7(po+B)
c- a - -

0

and in general

2 ZCO
0 P

2 I
In the calculations the value unity will be used for co0  the solution

in a given case being given by the appropriate multiple of this solution.

The boundary conditions at s - sa, due to the solution being reg-

ular there, are obtained as follows. This line is a characteristic so

that, on it

dR
- U UCdt

and hence

1 Rl(1/cZ) -3-2a 8.+la
l l ~R-/) 8 R •e'+(1/a) %-reso Rl-('/a)

+ + 'i

1

so that

(4.3)

, -, = •1 bo+(r-1")'
S o (r+k)- { 8 - (3-2a) 8

The regularity condition is obtainable either by application of the charac-

teristic condition on - or else by observing that the first of Eq.

(4.1) implies

__



19

b 0_ 0 'here o denotes the value at s so0- 0
and the third implies

a 0

which is

jcr(rs 0 +F. 0 ) + (J.-a)(k-l)(ro0-F0so0 )

(r1- k)b o+Ofo- o-) 2ao(r-k) (F- 0-)(r -k0o) - 0 (4.4)

Hence r S are known in terms of 5.

Let us take any trial value of 6, B(0) say, and suppose that the

values of •, at :h- -E thus obtained are denoted by FH(O), 'H*

respectively. Since the system is linear any multiple of this solution is

also a solutiou of the differential equations. We require that a multiple

X of this solution satisfies (4.3), i.e.,

X'H(O) , A1  1- D' (4.5)

X1.H(°) A 2  P E'

in which X, P are unknown. Thus we can evaluate I and also X if it

is desired to tabulate the solution (this is not done here).

The application of Whitham's rule, that the flow variables at the

shock, -= -1, satisfy the characteristic condition at I - ti' gives

a simple algebraic formula for the approximate evaluation of P

-D'E-EID (l-k)CD'E44+')
W 2DE 2(D+E)(D+kE)

However, one cannot expect this approximation to have much accuracy.

A m -

- I4
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r• The evaluation *f • by this method is extremely simple due to the

fact that it is ,ntirelv alaebrain. Thp ahIm nnpllnd P^ A,!,-_-t-

exactly (Welsh, 1966) could also be applied here. However, tl~is involves

the exact integration of the system (4.1). Instead of doing so it is pro-

posed to apply an approximate algebraic method, the accuracy of which may

be gauged by comparing the results of this method to the gas case with the

exact values. In theory, one could develop the exact regular solution of

(4.1) as a power series about s = sop although the algebra involved be-

comes impossible after the second terms, whose values are needed for the

exact method. We shall make use of the fact that the range of integration

is quite small, of order 0.2, and evaluate the series solution only as far

as the second term, of order s - s 0. In other words, we shall evaluate

F (0)is il for s - s(o) and replace - (o) - on the left hand side

of (4.5) by

'H(o) - (o) + Fl'O)(sH.so)

(o) r + I1  •s'o

7H (o) - 0 o) + I(o). H_ 0)

and denote the value of P so obtained by P1  (the first order solution).

The less accurate, zero order solution ° (will also be found by truncating

the series after a single term so that F( s H(°) are replaced by I(0)1

so ,respectively.

The values of Po0, P1t 0w are given for 7 - 7, j - 1,2 in Table II

along with the entropy varying case fnr 7 - 3 (Welsh, 1966).

5. THE APPROXIMATE SOLUTION TO THE COMPLETE MOTION

The work of this section arises from the work of Chester (1954),

Chisnell (1957), and Whitham (1958), on plane shock waves propagating along

Ia ) ' " ... . . ... 1



21

a tube of varying cross-sectional area A. Evidently A a R , j - 1,2,

-rr t; - wu4Le .L, culie-shaped tubes and hence to complete cylindrical

and spherical shock fronts. The method emplnyed by the.e authors, which is

in effect to apply Whitham's rule taking complete account of the state ahead

of the shock, and so is not restricted to strong shocks, gives good agreement

with the numerical solution of the complete system of partial differential

equations obtained by Payne (1957).

The characteristic condition is

du - kdc - -" c +u R

where the q) term is omitted for water,

2c o 1

U-7+1 M ~

C C--(° 0 (2'M7(+-)4 (7-)Ms+2) since M -IL < 0

This results in the formula

JdR + 2M dM 0
R+ M2_1 K(M)

for the shock propagation. If we denote K(M) for a gas by K(°)(M),

then Chester's formula is

r2

2 1 2 (M -1).f 1r K - Jt +42 .X)(M (5.1)

where x (7-1)M2+2

y - 271M2.7+

and the formula for water in which (p is neglected is
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2 (+(2(M'*-l) 1+L L _±L (5.2)

In the limit M-4 1, for weak shocks, K-4 1/2 in both cases for all

7, so that the integral for H is

H- - % RJ/2

the law for acoustic propagation.

In the limit as H-+ - the integr'al

M a R"(j/2)Kw

so that Ks (1/a )-l, spherical case.
W

Graphs of K(°)(M) and K (14() are given in Fig. 2 for several cases,

the one most relevant to the present work being K(1 )(M) for 7 - 7. These

results give an idea of the effect of neglecting ent'voy variation, which

is substantial for 7 - 1.4, but decreases as 7 int;r.eases, and is not

nearly so great for 7 7. For a given 7, K(1)(M) < K(°)(M) for all

M, so that the entropy being neglected causes the shocý to accelerate more

rapidly. K is mainly monotonic, increasIin for large 7 and decreazing

for small 7. For Y = 2, Ka(1) - 1/2 and K'l(M) varies ve;•, .t-lei..

so that

M 2 - 1 9R_/

is a very accurate approximation for all M.

The aesults also relate to the propagation of a shock wave in a ..ube

of varying cross-section, the general area charge dA/A replacing the

term JdR/R.
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6. THE SPHERICAL AND CYLINDRTCA!. '!,!C, Tfl

The self-similar solution for the final states of the collapse Of aa

imploding shock wave is independent of the means by which the shock is

initiated, except for scaling factors. This also applies to perturbations

to the self-similar solution obtained by taking account of the pressure

ahead of the shock.

Here we shall consider the initial propagation of the shock wave with

the initial state of a spherical pressure discontinuity separating two uni-

form regions. The appearance of the initial radius of the sphere r0  as

a parameter means that the flow is non-similar. However, in the limit as

the instant of release is approached, the flow im independent of r0  and

is given by the classical solution for the one-dimensional shock tube,

caused by the release of the plane diaphragm separating two uniform media

at different pressures. This solution is self-similar. The only parameters

have the dimensions of pressure and density (r neglected) so that the

similarity variable is r/t and the flow in uniformly expanding. In this

solution the pressure ahead of the shock is taken into account exactly

(for the final collapse the similarity variable is r/t, 0 < a < 1 and I
similarity demands that the pressure ahead of the shock be neglected).

As the shock propagates initially disturbances will arise in the flow

due to the departure from plane geometry, and these will cause an imploding "k

* - shock to accelerate and an expanding one to decelerate. These disturbances

will be treated as a perturbation on the basic, one-dimensional, self-

similar solution, to obtain the initial acceleration of the shock wave.

The analysis will be applicable to any combination of gas and water for

the two media, and also to either the aphere being at a lower pressure than

its exterior or the reverse situation. Since it is known that the final

1J

..... .... .... .... .... ..... .... .... .... ....
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collapse rate is sin2ular. a series obtained An n nartmrhhtinn w411

taialy not be valid up to the moment of collapse, and can only describe

the initial motion (i.e., for small values of [r-rt1/r).

The representation of the one-dimensional shock tube flow, with r =r

as the diaphragm position is shown in Fig. 4. For this diagram the high

pressure region is r < r0 . The gas in the lower pressure region is com-

pressed through a shock wave and that in the high pressure region is

expanded through a aimple wave. The regions 0,4 beyond the influence of

these waves are in the initial stationary states. The regions 2,3 are

in uniform motion with the same pressure and fluid velocity. The contact

front separates the two media. The region 1 is a point-centered simple

rarefaction wave.

In the one-dimensional system this flow would persist for all time in

the absence of any dissipation. The disturbances on this flow due to a

spherical or cylindrical geometry will start from t - 0 and will be small

in the initial stages. These disturbances will travel along characteristics,

so let us consider the overall picture of the disturbances. Consider first

the fluid in the high pressure region r < re, i.e., the regions 0, 1, 2.

No disturbances can propagate in the region 0, which remains uniform.

Also the path of the last characteristic of the simple wave, separating 0

and 1, is not disturbed. In the expansion wave, region 1, there will be

one degree of freedom for each family of characteristics along which dis-

turbances may propagate. By a degree of freedom we mean an arbitrary

constant in the general solution for the region, and these constants which

arise wiVl be determined from appropriate boundary conditions. In any

region there are three families of characteristics, c(1) and c(o)

defined by d/dt w u ± c, d/dt - u, respectively. Thus in any region

_ ,I
_______________________
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there will be at most three degrees of freedom. There can be no entropy

disturbance in the simple wave, so that there is no degree of freedom

associated with the c't characteristics, i.e., the particle paths.

The negative characteristics are intersecting straight lines through

r = ro, t - 0. In the basic flow this point is singular as the character-

istics intersecting here have different values of the characteristic vari-

able. Since all perturbations must be zero at t - 0 and all these lines

intersect at t - 0, it follows that there can be no disturbances props-

gating along c Hence there is only one degree of freedom in the

simple wave due to disturbances along c(+), and this will be determined

by the condition that it is zero on the last characteristic of the simple

wave.

There is no entropy disturbance in region 2 but there will be disturb-

ances on c(+) and c(-) the former coming from the simple wave and the

latter from the shock. The solution in this region has to be matched with

that on the first characteristic of the simple wave. This condition deter-

mines the constant associated with c(+) in 2 to that of c(+) in 1

as the disturbances propagating along C(-) in region 2 do not enter
4

into this matching.

Thus the motion of the gas to the left of the contact front can be

described except for the degree of freedom associated with c(") in region

2, which will be determined by matching this solution with that for the

gas initially in r > r., along the contact frdnt.

The region 4 ahead of the shock is unperturbed. However, the path

of the shock itself will be altered, causing disturbances along all three

families of characteristics in the region 3 behind it. The conservation

equations across the shock serve to determine the boundary values of the

9..
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solution in terms of the change in shock speed, so that the flow in this

Se•itn i: cPe;•i!i• in Lerms or one unknown, the change in shock speed.

There are two conditions to be oatif•fed nt the coatac;L front, the

continuity of pressure and fluid velocity. Since the boundary values to

the left and right of the front each contain one unknown, these two con-

ditions will determine the flow completely.

The characteristics along which disturbances propagate are sketched

in Fig. 3. The problem is greatly simplified if the disturbances propagating

along c(+) in region 3 are neglected, as the propagation of the shock

wave is then determined simply by examination of the boundary values at the

shock, without reference to the motion behind the shock. This situation

would arise if there were no simple wave and the regions 0,1 were identi-

cal to 2. An extensive region of uniform flow behind the shock cannot arise

in an entirely spherical or cylindrical geometry. However, it describes a

uniform plane shock wave traveling in a one-dimensional tube and meeting an

appropriately varying area change. This is the case studied by Chester

(1994), Chisnell (1957), and Gundersen (1958). For a very weak shock, which

is nearly sonic, the disturbances reaching it along c(+) take a long time

to do so and hence their effect will be increasingly small for increasingly

weak shocks. The simplest derivation of the formula for the shock propaga-

tion neglecting l,.ec di.sturbances is that of Whitham (1958), and it will

be shown that neglecting them in the present analysis reduces to his formula.

'I The release of a pressurized sphere in air has been studied by Friedman (1961),

who uses Whitham's rule for the propagation of the main shock wave.

Equations of Motion

The equations of motion for the spherically or cylindrically symmetric

flow, in the absence of dissipation due to heaf conduction, are those given
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previously in Section 3. Defining the characteristic variables 27

zý + - 1 ý- J 1i

Ithese are

a + (u±c)a -c ++tr r u~ r2Y Or}(61
Cpt + Urpr u 0

The basic self-similar flow is given by the above equations with the geometry

term involving j omitted, the variables being functions of (r-ro)/t only.
The perturbations to be evaluated here are essentially due to the effect of

this term.

The basic solution is of the form

* ± I.

(P r-r0

and also Uo constant. Let us expand about this solution in the foim

ao a(A) + eGl Q0.) +e6a 2 () + .... (6.2)

r-r
where G 0

r

We shall be concerned with only the first order corrections, i.e., those with

suffix 1. On cubstituting the variable, expanded in this form, into the
equations of motion and equating like powers of ., we obtain the equations

governing the basic flow

-2 (6.3)

0 CO00o-+o'X 27 0 Jo
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and the equations for the perturbations

S(uo-;k)(1 ' + Uoql + Xulv_' - 0

t)'+ ?.(u1 coo + (uo±co)al (6.4)

self-iilarit ;uC 0 + 0 12%.c 1  + C~q+~)

The simplicity of. the equations (6.3) is due to the combination of

self-similarity and characteristic propagation. The first is the rtatement

t a is constant except for a possible discontinuity on X - Uo, i.e., the

particle path through the point of initiation in the r-t plane. Thus the

right hand side of the second is zero, and this becomes

(u±c-A)a - 0

which states that 09 0 is constant except possibly on an appropriate char-0

acteristic through the point of initiation. Here, in the case of the point-

centered simple wave, it is possible for there to be an intersecting family

of such characteristics, giving a region in which the first factor equated

to zero is the appropriate solution of this 9quation. For all other regions,

which are uniform, a - constant is the solution. The characteristics of0

the system (6.4) are evidently the three characteristics of the flow.

The Simple Wave

Here we shall solve the system (6.3) for the familiar s~lution for a

point-centered simple wave and hence the system (6.4) for the perturbations.

In these equations a double sign ± was used for simplicity, the upper

sign referring to the c equation and the lower to the c In order

to develop the two cases of high pressure inside and outside the sphere

simultaneously a similar notation will be used. The former will be referred

S. .. ...... ... ...-- i- -- " -m*-.... - .- "- -" - -- -, • i
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to as case +, and will be given by the upper signs in the eauations. AnA

the later, case -, will be given by the lower signs. Thus the two signs

refer here to different physical situations, whereas, as used previously,

they refer to different equations describing the same physical situation.

The basic simple wave is

u o c - . 0
0 0

a 0 0 a (6.5)

(o = constant

The solution for c1 is

7+1
7-1

q*l (2cot + (7-1)%) A = arbitrary constant
coR in region 0

and the equations for +areR It+[2Mco (7-)i.)• 0 4,CoR+(3~7)?.a

02% U(+1 uCl~ (6.6)

a +

- Xt 7+ %)(2c AR(l~ (2cR

and for a"

0 (7+) a

SL (2c~ e( 7 l) cX) 0(7 ( X+4 •oR ( "u' 1-Cl1 (6.7)

7+1 CR oR 2 1
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In each pair of equations one is algebraic so that their solution has only

one arbitrary constant. This is due to there being no disturgances propa-

sating along the rectilinear, intersecting characteristics, the similarity

approach ruling out such disturbances automatically.

The solution of the differential equations which appear in (6.6) and

(6.7) may be expressed as

Xa (7 -j j~ - ORl(3i
(-71)(37-5) (7-1)(3-7)

S7+1 (6.8)

A 7-1 2(7-1)
27(37-1) 1

where ) = (2cR (7-I)X) , 7 3, 5/3,

and K± are arbitrary constants.

The algebraic equations may be combined as

X Z5 ; _ C1 - L ± (4 Q ±c0O)(*) (6.9)

Since the perturbed flow is homentropic A may be set equal 'to zero

in (6.8). The flow is continuous across the last characteristic of the

simple wave separating the regions 0 and 1, i.e., X. - + %oR' so that

Ul, c1 must be zero on this line. The equations (6.8), (6.9) for u , c 1

.are singular only in the case 7 - 1. The right hand side of (6.9) is zero

on X + coR, so K± is determined by equating the right hand side of

(6.8) to zero. This gives

7-3 37-5
± 2j (7+:i)2'-1) 2(7-1)

K1 aoR (610
K. 1 U(37-5) (3-7) (6.10)

The solution in the simple wave is now determined completely by (6.8), (6.9),

with A - 0 and K± given by (6.10).

! L - -
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in the basic simpic wLve the first characteristic is the iine on whici-.

the value of the fluid velocity is the same as that behind the shock. u..

say. On this line

o0

c 0  C oR 2 s

A. Y+7- u ;
" 2 s COR

The Uniform Regions 2 and 3

In the case of a uniform homentxopic basic flow the equations (6.4)

governing the perturbations are

%.(U0 -%)( ) 1' + uoJ1  - 0

. (±Co.A)a al + (Uo±co)a+ U c + 0o
0 0 1 0U1oo +27 I2 U)

where uo, c are constant.

The solution of this system is

X-u
A%0

A1 (6.11)

% U +K,.± ±cA)
1• -= •o o 2 0 0

The last term is constant on u ±c0 -k 0 X, i.e., on c(±), but the other

torms are not associate4 with characteristic propagation as written. The

entropy term is associated with c(0) so we can write it as

Ac 2  Ac Ac

2Y 27 0 27 0 0

and the first term may be written

2 Uoo 2 u±c 2 oo u±c
0 0 00a



32

so that (6.11) may be expressed in the form

j Uor- Ac

X± + " 2 0± - Ac c Qio-uo) + e(uo±Co") /
0 0

where in the last equation the terms are respectively the geometry modifi-

cation, the entropy disturbance along c(°) and the disturbance traveling

along c . By neglecting the disturbances reaching the shock from behind,

i.e., by setting the appropriate K zero, Whitham's formula is obtained,

A retained for a gas and omitted for water.

The particles in the region I between the simple wave and the contact

front do not pass through the shock, so that A - 0 in region 2, and

% -u 0  +K ( A1 2 u tc 2+K 0 0

where K are both non-zero.

This flow has to match identically with the pelturbed flow in the simple

wave on the first characteristic of the simple wave separating the two

regions, which determines one of K2± The remaining K2 will be deter-
22

mined by the conditions nt the contact front. Here

X- u-

so that

2u ±c u
O 0 0

0 S OR 2 C

The solution in the region 3 between the contact front and the shock

•!i.

I-I,? [ .... . .. .... .. ....." ..... ..
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•z " A(Q-uo)

. )Ao
•O•~ ~ -- 2 : +JUo':1: .----" (\-u) + K_+(U ilc -X')

L Z u d:c 2i 0" ,. I" 000 0

If the medium in this region is gas then A is non-zero and is ditarmined

by the ce..servation equations at the shock. For water, in which the effect

of entropy variations is neglected, A will be zero. The conservation

equatiuns at the shock, i.e., on X - U , give three equations relating

A, K3 +, and UI, so that the solution in this region is expressible in

terms of the single unknown U1 . The boundary values at ;'he contact front

are given by (6.14) with X - uo. The physical situations are here dis-

tinguished by the fact the un, U are negative for the imploding shock
0 0

and positive for the exploding shock (c being always positive).

The continuity of fluid velocity and pressure at the contact front

give two equaticns involving the unknown K2  and U1 . No calculations

have been performed as yet.

I4
4'

................
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TABLE II

Entropy e
V 0 'exac t

varying 3 2 0.6667 0.5718 0.9750 1.0435

varying 3 1 0.6667 0.5570 0.7629 0.7738

constant 7 2 0.6269 1.6523 0.7733

copstant 7 1 0.6269 1.6198 1.0507
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I

o•. .. o•,. .. 4. .... v . I

I



0/

0

,,o GRADI/ENTe
FIRST OR DER NODE . ASYMP T O' /!• ASYMPTT

"GRADIENTn '

Go AS.

AS

SECOND ORDER NADDLE AS.

t0

AS

\AS

THIRD ORDER NODE

/FI .
FIG. I



II
C71

ii I ~o-- 9:

I~jrfcm

ii .1 .2 )

Iz z
I I

cl I



I.

4
0

ro

S.W. SHOCK WAVE...
C.F. CONTACT FRONT

EAW EXPANS:ON WAVE

FIG. 3

tt9

SW. HOK AV

I 'I

i4'

S- : na nu ' " i . ... " . .. ... i.. ......... .. ...... ...nn ... . .. n n nunu n" . ..... .... ..... . • . . . . . .. ...... ..



UNCLASS IFIlED
Security Classification

(Security' classiication, of giftls. body' at abstraed and Indegdng annotation musta bO entered iAsts 10. ovgerll report If C1ei8llted)I
I RGNATIN G ACTIVIIY (Corpouete author) Jae. REPONT BECaURITV e

UNCLASSIFIED~
University of California, Berkeley 2b GROUP

3 RPORpqT TI TL E

COLLAPSING SPHERICAL SHOCK WAVES IN WATER

4 DESCRIPTIVE NOTES (Type of report eand inclusive data@)

TECHNICAL REPORT
5. A UTNOR(S) (LootI flinn, fire( name. WOWia)

Welsh, Robert L.

6.0 REPO RT DATE Spebr16 4 OA O FPGI rmp

Septembe 196
Be. CONTRACT ON GRANT NO, Be. OWflGINATONSl NEPawT NIJmsUN()

Nonr-222 (79)
b. PROJECT NO. AS -66-12J

Sb.m OTE N£PONT NO(S) (Any other ,aLU.sbw G my eaat*

d.
10. A VAILAEILITY/LIMITATION NOTICES

Qualified requesters many obtain copies of this report from DDC.

I I. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTWI~TY

Office of Naval Research

f3 ASISTRACT

The work presented here is related to various problems conc~erned with the
propagation of shock waves, mainly imploding spherical and cylindrical shock
waves, in water and (in part) in gases.

JAN Gdswarlty Classification-



UNCLASSIFIED

Security Class~imet-lon-
KE ODS_ INK A LINK 0 IIK C

Shock ~t~
Spherical
Cylindrical
Self-Similar
Imp los ions
Ocean

INISTRUCTIONS
1. ORIGINATING ACTIVITY: Enter the name end address imrposed by security classification. using standard statements
oft he contractor, subcontractor, grantee, Departirnent of Do- wtuch on:
tons@ activity or other orgarilsadton (corporate author) issuingt (1) "Qualified requesters may obtain cop'ies of this
the report. telport fromt DDC. "I
1 a. REPORT SECUFATY CLA3SIFICATIONi Enter the over- (2) "Foreign announcement and dimsentinstion'of this
all security classificationu of the report. Indicate wHether report b~y DDC Is not authorized."
"Restricted Dots" is Included. Marking Is to be in accoti$
*me@ with appropriate secuarity regulations. (3) 1111 L. Govemmnies agencies may obtain copies of

the~ report directly from DDC. Other qualified DDC
21; CIROUPt Automatic downgrading is specified in DoD Di- users ahalý request through
rective 5200. 10 and Armed Force. Industrial Manual. Enter
t ht- group number, Also, when applicable, show that optional -

mArkings have been uwed for Group 3 and Group 4 as author- (4) 11U. S. military agencies may obtain copies of this
a~d report directly front DDC. Other qualified users

3. REPORT TITLE: Enter the complete report title in all shalf request thorough
cap~itol letters. Titleis in all cases should bie unclassified&'
11 a meaningful title cannot be selected without classificae-
tiun, shotv title classification in all capitals In parenthesis (5) "All diatribution of this report is coritroiled. Qual-
immediately following the title. Iifed DDC users shall request through

4. D)ESCRIPTIVE NOTES: If appropriate, enter the' type of _______

report. e.g., interim, progress. summary. annual, or final. If the report lies bsee furnished to tho Office of Technical
Giive the inclusive dates when v specific reporting period Is Services, Department of Comtmerce, for seale to the puhlic, indi-
coveoted. cate this fact and enter the price, At known.
5, AUTTHOR(S): Enter the name(*) of author(@) as shown on IL. SUPPLIMENTARY NOTES: Use for additional explais.
or in the report. Enter test name, first name, middle initial, tory notes.
If military. show rank and branch of service. The name of
the principal ui~thor is an absulute minimum trequilremeont. 12. SPONSORIN~G MILITARY ACTIVITY. Enter the name of'

e. RLI-ORTElAE.. nte th dae ofthereprt s ~the deparimental Project office or laboratory sponsoring (peyr
mnonth. yvar; or month, year. If more then one date appears ~ dfrtersac n dvlpet nld de.
on the report, use date of publication. 13, ABSTRACT: Enter an abstract j~iving a brief and factual

summary of the; document indicative of the report, even though
7a. TOTAL NUMBER OF PAOX& The total page count it may also appear *]&*where lin the body of the technical re-
shoule follow normal pagination procedures, i.e., enter the pairt. If additional space is required, a continuation sheet shall'
number of pages contsirtift4 information, be attached.
7b. NUPUBER OF REFERENCLS: Enter the total number of It Is itighlly desirable that the abatract of classified reports
references cited in the report. be unclassified. Each paragraph of the abstract shall end with
8la, CONTRACT OR GRANT NUIBEDRs If appropriate, enter an indication of the military security classification of the in-
the applicable ntumber of the contract or grant under which formation In the paragraph, represented as (73), (S). (C). or r(U).
the report was written. There, Is no limitation on the lenth of the abstrect. How-

Sbhi & d.PROJECT NUM3ErA Enter the appropriate ever, the suggested length Is from10to2 wrs
military department Identification, such as project nuamber, EgWO S: eywdsaetcialymnnfutas

subpolet nmber sytemnumbrstas numer,5k.or whorl phrases that charecterise a report and may be used as
9s. ORIGINATOR'S REPORT NUMBER(S): lnter the offi- index emntres for cetaloging the report. Key words must be
cial report number by which the document will be Identified selected so that no security classification is required. Hdeatd-
and controlled by the originating activity. This number must fiats. such so equipment model designation, trade nows, military
be unique to this report. project code narme, geographic location, may be used as key
9b. OTHER REPORT NUMUER(S): It the report has been words but will be followed byr an indication of technical con-

assilgned any other report numbers (either by the originator text, T1he aseisnmont of links, nxlesm, and weights is optional.
.r by the sponsor), also enter this number(s).
10. AVAIL ABILIT Y/LIMITATION NOTIC23: Water amy lii.
istatioss on further diseseixiation of the rvrort, other than thosel

DD I JAN 4.1473 (BACK) UNCLASSIFIED

Security classification


